
Pergamon 

www elsevier comnocatrilappmalhmech 

1. A&. Maths Mechs, Vol. 65, No. 6, pp. 941-950,200l 
0 2002 Elsev~er Science Ltd 

PII: SOOZl-8928(01)00100-9 
All rights reserved. Prmted m Great Bntam 

0021-8928/01/$-see front matter 

A CRITERION FOR THE NON-EXISTENCE OR 
NON-UNIQUENESS OF SOLUTIONS OF 

SELF-SIMILAR PROBLEMS IN THE MECHANICS 
OF A CONTINUOUS MEDIUM? 

A. G. KULIKOVSKII and E. I. SVESHNIKOVA 

Moscow 

(Received 1 December 2000) 

Systems of hyperbolic partial differential equations expressing conservation laws are considered. A sufficient condition is formulated 
under which the self-similar problem of the disintegration of an arbitrary discontinuity (or the “piston” problem) either has no 
solution or the solution is not unrque. This sufficient condition is determined by the existence of non-evolutionary discontinuities 
which may be considered as a sequence of two evolutionary dlscontmuities moving at the same velocity, if such a representation 
is unique. The condition is more general than that formulated previously, which was based on the existence of a non-proper 
Jouguet pomt. The new criterion is satisfied by weak quasttranverse shock waves in elastic media, whatever the sign of the coefficient 
of the non-linear deformation term. It also enables one to draw conclusions as to the non-existence or non-uniqueness of solutions 
of problems of the theory of elasticity in the case of finite-amplitude waves. 0 2002 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

Consider a system of quasilinear homogeneous hyperbolic equations obtained from integral conserva- 
tion laws for the one-dimensional unsteady case 

(1.1) 

The functions fk may be treated as the densities of certain physical quantities, gk are the fluxes of 
these quantities through an element of unit area perpendicular to the x axis, and u, are the unknown 
state parameters. The hyperbolic system (1.1) admits of n real characteristic velocities c,(uJ, , . ., c,(u,). 
Corresponding to these are n continuous solutions - Riemann waves, which may tilt, forming 
discontinuities. 

The relations at the discontinuities are obtained from the same integral conservation laws, and they 
have the form 

[gk]-W[fk]=O, k=l,2 ,..., n (1.2) 

where Wis the velocity of the discontinuity, and u] = f’ -S- the difference between the post- and pre- 
jump values off. The relations at the discontinuity make it possible, for every pre-jump state uT = U, 
and every value of W, to specify the possible post-jump states ~4:. Elimination of W from the relations 
yields the shock adiabat - a curve in the state ml-space passing through the initial point ZJ, and intersecting 
itself at that point, since the branches bf the shock adiabat are tangent at that point to the integral curves 
of n Riemann waves [l]. Using the same Eqs (1.2), one can then find the velocity W of the jump as a 
function of the position of the point on the shock adiabat. 

The problem of the disintegration of an arbitrary initial discontinuity for system (1.1) is formulated 
as follows: at t = 0, the planex = 0 separates two half-planes with homogeneous states:x > 0, u, = U, 
= const andx < 0, u, = ~4: = const. At t > 0 sequences of self-similar plane waves propagate from the 
boundary in both directions, as discontinuity fronts and centred Riemann waves, which are to be 
determined. One can also consider the self-similar problem in the half-space x > 0 only, specifying 
constant values u, = u; at the boundary (“piston” problem). 

Besides the equations of the shock adiabat, discontinuities that can be used in the solution must also 
satisfy the non-decreasing entropy condition and the evolution conditions [l, 21. The evolution conditions 
are criteria ensuring that the system of homogeneous algebraic equations obtained by linearizing the 
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conservation laws at the discontinuity (1.2) will be uniquely solvable for the amplitudes of small 
homogeneous perturbations propagating from the discontinuity. The evolution conditions are 
expressed as systems of inequalities between the jump velocity W and the characteristic velocities 
cf, c~, (j, k = 1, 2 . . . . .  n) before and after the discontinuity, respectively: 

c-~W<<-c;+j, c,_j+ <W<-c;, k= l ,2 ,  ..., n (1.3) 

Inequalities (1.3) express the condition that the number of different types of perturbations propagating 
from the discontinuity (or, what is the same, the number of outgoing characteristics) should equal 
n - 1. When that is the case, the n linearized relations (1.2) at the discontinuity must uniquely define 
the amplitudes of the n - 1 outgoing waves and the perturbation of the shock wave velocity. 

For every k, such a pair of inequalities defines a type of discontinuity, which we will refer to as type- 
k discontinuities. Obviously k discontinuity types exist, depending on the number k (inequalities involving 
the non-existent c~ and c~+1 must be omitted from conditions (1.3)). 

Inequalities (1.3) define segments on the shock adiabat corresponding to evolutionary shock waves. 
At the endpoints of these segments the jump velocity is identical with one of the characteristic velocities, 
depending on the pre-jump state (if W = c~) or the post-jump state (if W = c~). These points (except 
the initial point) are known as Jouguet points. 

For an intuitive representation of inequalities (1.3), it is convenient to use a diagram in which the 
velocities participating in inequalities (1.3) are plotted along mutually orthogonal axes, thus mapping 
the validity of these inequalities [3]. Each of the hatched rectangles in Fig. 1 corresponds to a certain 
type (the kth) of shock waves. Since it is known how the velocities W and c~ vary along the shock adiabat 
(the velocities cf do not vary), one can map the trace of the shock adiabat in the diagram as a function 
of W along itself. The velocity of an infinitely weak kth discontinuity, i.e., the velocity of the jump at 
the initial point A, is identical with the pre- and post-jump characteristic velocities W =c~ = c~-. This 
means that the initial stateA(c~, c~) (k = 1, 2 . . . . .  n) is represented in the diagram of Fig. 1 byn lattice 
points. 

Lax formula [1] for the velocity of weak shock waves, W = (c~ + c~)/2, enables one to conclude that, 
in the neighbourhood of the above-mentioned lattice points, the shock adiabat through them goes off 
at one end into an evolution rectangle, and at the other end - into the "symmetric" non-evolution 
rectangle, as shown in Fig. 1. Thus the shock adiabat always contains at least one evolution segment 
for each of the n types of discontinuity (and possibly more than one). 

The linearized conservation laws at the discontinuity (1.2) are not sufficient for discontinuities 
represented by rectangles above the hatched one.s in Fig. 1 to have the evolution property. To make 
such shock waves evolutionary, one can expand system (1.2) by adding relations independent of the 
conservation laws. 

In what follows, we will be particularly interested in the discontinuities represented in Fig. 1 by 
rectangles adjoining evolutionary rectangles below and on the right. For such discontinuities to be 
evolutionary, the number of boundary conditions must equal n - 1, while in fact the number of relations 
(1.2) is n, that is, one more than necessary for these discontinuities to be evolutionary. Such 
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discontinuities will henceforth be called non-evolutionary { 1 } (the number in braces is the number of 
superfluous boundary conditions). 

We will show that the evolution conditions do not contradict the formal possibility of replacing such 
a non-evolutionary discontinuity by two evolutionary discontinuities moving at the same velocity. Indeed, 
in the region between these discontinuities there are n distinct types of small perturbations, that is, all 
possible types of perturbation, each of which propagates from either one or the other discontinuity. 
There are n - 2 perturbations that propagate from the combination of two discontinuities into the exterior 
region, just as from the non-evolutionary discontinuity that they are replacing. Thus, the total number 
of perturbations propagating from the two discontinuities is 2n - 2. If the same number of perturbations 
propagates from each, namely n - 1, then both discontinuities are evolutionary. Whether in fact a non- 
evolutionary discontinuity may be represented by a sequence of two evolutionary discontinuities (we 
shall call this disintegration) depends on the properties of the shock adiabat; this question will be 
considered later. 

Note that a non-evolutionary {1} discontinuity may only disintegrate into two evolutionary dis- 
continuities moving at the same velocity, since if it were to disintegrate into a larger number of 
evolutionary discontinuities, the relations following from the conservation laws would not uniquely define 
the amplitudes of small perturbations and perturbations of the velocities of the discontinuities. In 
addition, it follows from the above arguments that, if one of the two discontinuities into which a non- 
evolutionary { 1 } discontinuity disintegrates is evolutionary, the other is also evolutionary. 

2. T H E  D I S I N T E G R A T I O N  OF N O N - E V O L U T I O N A R Y  {1} 
D I S C O N T I N U I T I E S  AND T H E  U N I Q U E N E S S  OF THE S O L U T I O N S  

When the shock adiabat is mapped on the evolution diagram of Fig. 1 (for a fixed pre-shock-wave state), 
the quantities c7 are determined by the initial state and are therefore constant. Hence the velocity 14/ 
can be mapped along the horizontal axis in some fixed scale. This cannot be done along the vertical 
axis, because the quantities c + may vary along the shock adiabat. Points of the shock adiabat lying on 
the same vertical line in the diagram then correspond to discontinuities moving at the same velocity 
with the same initial state. 

Consider the situation illustrated in Fig. 2: an evolutionary segment above a non-evolutionary { 1} 
segment of the shock adiabat with initial pointA (only parts of the shock adiabat are shown in the figure). 
Consider points M and M1 of the shock adiabat corresponding to the same velocity IV. The corresponding 
points on the shock adiabat in the phase U,-space will be denoted by the same letters M and M1. Since 
the discontinuities A --> M and A --> M1 (where A is the initial point of the shock adiabat) are moving 
at the same velocity IV, it follows that if the conservation laws (1.2) are satisfied, the conservation laws 
will also be satisfied at the discontinuity M 1 --> M, which is moving at the same velocity IV. Thus, the 
discontinuity A -~ M disintegrates, that is, a sequence of discontinuities A ~ M 1 and M1 --~ M exists, 
each of which is moving at the same velocity W as the non-evolutionary { 1 } discontinuityA ~ M, while 
their pre-jump (.4) and post-jump states (M) are the same. By our previous discussion, the evolution 
property for the discontinuityA ~ M1, which is of type k, implies the same condition for the discontinuity 
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M1 --~ M, which is obviously of type k - 1. Throughout  what follows, when referring to shock adiabats, 
we shall indicate their initial points in parentheses. 

We will now consider a series of problems concerning the disintegration of an arbitrary discontinuity 
(or "piston" problems) in which all the waves (which may be discontinuities or Riemann waves), apart 
from those numbered k and k - 1, are fixed. The state before the kth wave (A) will be fixed and taken 
as the initial state for the shock adiabat (A). Let us find the set of points in ui-space that can be reached 
from A by a sequence of two discontinuities of types k and k - 1. By the previous reasoning, this set 
also contains the non-evolutionary {1} part of the shock adiabat (A) for whose points, at the same W 
values, evolutionary discontinuities of type k exist (in the diagram of Fig. 2 this is the part of the non- 
evolutionary {1} section of the shock adiabat above which the evolutionary segment is situated). Along 
this non-evolutionary {1} part of the shock adiabat (A), the velocities of the kth and (k - 1)-st 
discontinuities are identical. In a self-similar solution, obviously, the (k - 1)-st discontinuity should have 
a velocity not exceeding that of the kth, Wk-~ ~< Wk. If we fix the point Mb and consequently Wk also, 
then, as W,_I varies, the point representing the state after the sequence of the kth and (k - 1)-st 
discontinuities will move along a shock adiabat with initial point M1. When the velocity Wk-~ reaches 
the values W,, the state (M) after the system of two discontinuities moving at the same velocity must 
belong to a non-evolutionary {1} segment of the shock adiabat. Let  us consider the general situation, 
when the velocity Wk-1 does not have extremum on the shock adiabat (M1) at the point M where it 
intersects the shock adiabat (A). 

As the point M 1 moves along the shock adiabat (A), the (k - 1)st shock adiabat (M1) in ui-space sweeps 
out a two-dimensional surface. Since in a self-similar problem it must be true that Wk_j ~< Wk, the state 
after the two discontinuities, of types k and k - 1, may belong only to the part of that surface bounded 
by the non-evolutionary {1} section of the shock adiabat (A). 

If we now decide to vary the n - 2 waves which were previously considered to be fixed, the curve 
corresponding to the non-evolutionary {1} part of the shock adiabat will - in the case of the general 
position - sweep out in u,-space a surface (hypersurface) E of dimension n - 1. This surface divides u i- 
space into two parts, in one of which the solution of the disintegration problem contains shock waves 
of types k and k - 1 whose velocities are the same on the surface E and equal the velocity of the non- 
evolutionary {1} discontinuity. We shall refer to this solution as solution I. 

If only one pair of discontinuities of types k and k - 1 exists with equal velocities into which the non- 
evolutionary discontinuity disintegrates, then it is obvious that, on the other side of the surface E, the 
solution of the problem will not simultaneously contain discontinuities of types k and k - 1 whose 
velocities are identical on E. Hence, if a solution in the region adjoining E from the other side exists, 
it will contain either (at least) one of the Riemann waves of types k and k - 1, or discontinuities of 
types k and k - I with different velocities on the surface Y.. Such solutions (if they exist) will be called 
solutions II. The regions in which solutions II exist in the general case are not connected with the shock 
adiabat (A) and are therefore not bounded by the surface E. 

Indeed, the constraints on the region of existence of solutions II have nothing to do with the possibility 
of whether one non-evolutionary jump exists, which satisfies the conservation laws, from the state before 
the kth wave to a point of  the surface Y., since in these solutions combinations of type k and k - 1 waves 
do not have the same velocity. If a solution II exists on the same side of the surface ~ where there are 
no solutions I, and its region of existence has nothing to do with E, then in the general case it may either 
not reach £ - which implies that there is no solution in some zone - or a region must exist in which 
there are solutions of both types I and II, that is, a region in which the solution is not unique. 

Thus, if the initial point for the shock adiabat is suitably chosen, so that it has a non-evolutionary 
{1} segment such that, in a certain velocity range, both non-evolutionary and evolutionary 
discontinuities exist, but only one of the latter, then one can also formulate conditions for the problem 
of the disintegration of discontinuities under which there is either no solution or the solution is not 
unique. 

The above statement about the non-existence or non-uniqueness of solutions becomes meaningless 
if there are no evolutionary discontinuities with the same velocities as non-evolutionary { 1 } ones, or 
if there are two such evolutionary discontinuities for each velocity. In the first case, the possible solutions 
have nothing whatever to do with the presence of a non-evolutionary wave of the type considered, and 
no conclusions as to solutions can be drawn in the manner proposed above. In the second case, the 
same hatched (kth) rectangle in the diagram of Fig. 2 will contain yet another evolutionary segment of 
the shock adiabat (A). Then two combinations of kth and (k - 1)st evolutionary waves will exist in the 
case when the remaining n - 2 waves have fixed amplitudes. If one now allows these amplitudes to vary 
arbitrarily, then the segment of the shock adiabat corresponding to non-evolutionary {1} 
discontinuities will, as before, sweep out an (n - 1)-dimensional surface Y~. But now it may turn out 
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that, on one side of that surface, there is a solution I containing one combination of kth and (k - 1)st 
discontinuities, and, on the other side, a solution II containing another combination of discontinuities 
of those types, with the surface Z separating the regions corresponding to solutions I and solutions II. 
In this case, therefore, solutions containing discontinuities of types k and k - 1 exist on either side of 
the surface Z and are uniquely defined. It is, of course, possible that the solutions I and II correspond 
to regions bordering on the surface X on the same side. When that happens, of course, the solution is 
not unique. It does not seem possible to distinguish between this case and the previous one on the sole 
basis of the form of the shock adiabat in the diagram. 

If there are three or more evolutionary discontinuities having the same velocity as a non-evolutionary 
{1} discontinuity, then on at least one side of the surface E two or more solutions containing 
discontinuities of types k and k - 1 will obviously exist, so that the solution will not be unique. 

Let us consider the case in which a solution exists but is not unique. Non-uniqueness is due to the 
appearance of a solution (designated above as a solution II) not directly related to the shock adiabat, 
defined in a certain finite region whose interior contains a non-evolutionary { 1} segment of the shock 
adiabat. Therefore, if such a non-evolutionary segment adjoins an evolutionary segment on the shock 
adiabat, part of that evolutionary segment will enter the existence region of the solution II which, as 
observed previously, consists of waves moving at different velocities. This means that shock waves 
corresponding to points of evolutionary segments of the shock adiabat which adjoin non-evolutionary 
{1} segments may be replaced by a system of waves with the same parameter values before and after 
the wave system. In these cases, the equations expressing the conservation laws admit of disintegration 
of the above-mentioned evolutionary discontinuities into a system of waves (which may contain other 
evolutionary discontinuities). 

The determination of the conditions under which such a disintegration of an evolutionary shock wave 
may in fact occur needs special investigation in specific cases. This question will not be considered here. 

Such evolutionary discontinuities, which may disintegrate into a system of waves, have been observed 
in the investigation of quasitransverse waves in an anisotropic elastic medium [4]. However, as further 
research has shown [5, 6], the perturbations must be strong (strong incident waves or a variation of the 
background) for such disintegration to occur. 

3. A REMARK ON THE STRUCTURE OF 
A NON-EVOLUTIONARY {1} DISCONTINUITY 

As has been shown [7, 8], if the number of conservation laws exceeds the number q of relations necessary 
for an evolutionary discontinuity, the structure of the discontinuity will contain q arbitrary parameters. 
In the case under consideration there is a single-parameter set of integral curves (ICs) joining the initial 
singular point (.4) and the final singular point (B) of the system of equations describing the structure 
of the non-evolutionary { 1} discontinuity (it is assumed that dissipative processes are sufficiently diverse, 
so that the solution describing the structure is continuous). Let us consider the two-dimensional surface 
consisting of the ICs emerging fromA and arriving at B. If, as usual, the singularities of the field of ICs 
are the stationary singular points of the system with simple eigenvalues (the coordinates of these points 
together with those of the points A and B satisfy the conservation laws), then either the 
aforementioned set of ICs is not bounded at all, or it is bounded by the separatrices of singular points 
other than A and B. Among these points there may be some point C such that a discontinuity 
corresponding to the transitionA ~ C is evolutionary. As remarked, the discontinuity C ~ B will also 
be evolutionary. A unique IC corresponds to evolutionary discontinuities. The behaviour of the ICs 
joining the pointsA and B is illustrated in the case of a single additional point (C) in Fig. 3(a), and in 
the case of two singular points (E and F) in Fig. 3(b). Thus, the set of solutions representing the structure 
of a non-evolutionary {1} discontinuity may contain solutions representing the sequence of two 
evolutionary discontinuities A ~ C and C ~ B, corresponding to the situation discussed in Section 2. 

The number of small perturbations of different types leaving from a non-evolutionary { 1} discontinuity 
is one less than that leaving from an evolutionary discontinuity. By analogy with problems of 
magnetohydrodynamics, for which numerical experiments have been carried out to study the behaviour 
of non-evolutionary discontinuities [9], the drop in the number of outgoing perturbations may be treated 
as the capture and accumulation of perturbations of a certain type within the structure by the non- 
evolutionary {1} discontinuity. By analogy with these results, we may expect that in such a process, if 
the amplitude of perturbations reaching the discontinuity is small, there will be a quasi-stationary 
restructuring of the structure of the discontinuity, due to an exchange of ICs representing the structure, 
without a change in the positions of the points A and B. If the incident perturbations do not vary in 
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time, their accumulation within the structure will lead to a monotonic shift of ICs in a certain 
direction, until they encounter the singular point C, so that ICs A ~ B disintegrate into two parts, 
A ~ C and C ~ B, corresponding to discontinuities with the same velocities. With further action 
of the incident perturbations, these discontinuities take on different velocities. The "amount" of 
incident perturbations necessary for the disintegration of a non-evolutionary wave is less, the smaller 
the width of the transition zone of the structure of the discontinuity, that is, the smaller the dissipative 
coefficients. If the dissipative coefficients tend to zero, the action of arbitrarily small perturbations will 
suffice for a non-evolutionary discontinuity to disintegrate (as this is guaranteed by its non-evolutionary 
character). 

4. SOME APPLICATIONS OF THE C R I T E R I O N  OBTAINED 
IN SECTION 2 

Let us consider the problem of an abrupt change in the load at the boundary of an elastic anisotropic 
half-space (the "piston" problem). A complete solution of this problem, which in some cases is non- 
unique, is a available for low-intensity non-linear elastic waves [4]. This enables us to illustrate the action 
of the criteria developed above in the case of low-amplitude quasitransverse waves and to extend the 
result to problems with finite-amplitude waves. 

Our investigation will be carried out in Lagrange variables corresponding to the Cartesian coordinates 
of the initial state [10]. The x = x3 axis is orthogonal to the boundary of the half-space x > 0, which is 
filled with the elastic medium in which the solution will be sought. The xl and x2 axes are parallel to 
the plane of the wave front. The deformation is characterized by the gradients of the displacement Ow,/Ox, 
of which only Ow,/Ox = u~(x, t) (i = 1, 2, 3) vary in the plane waves considered here. 

The medium is defined by its elastic potential (the internal energy per unit volume of the medium 
prior to deformation) ~(u,, S), where S is the entropy. Assuming that the non-linearity and anisotropy 
are small and taking only the principal terms responsible for these effects into consideration, we express 
the function • by its expansion in powers of u~ and ~S. Considering only quasitransverse waves, we can 
introduce a certain effective incompressible medium in which u3 does not vary, while Ul and u2 vary as 
in quasitransverse waves in the original medium [4]. For this effective medium, the aforementioned 
expansion of • is 

. =  f 2 +uZ)+g(u2_u2)_X-(u? +u~)2 +poTo(S_So ) (4.1) 
"(ul 2 2 4 

where f, g and × are constant coefficients. The first term defines the elastic potential of a linear isotropic 
medium, and the coefficient f differs only slightly from the shear modulus. The second term expresses 
the anisotropy of the medium in the plane of the front (wave anisotropy), the coefficient g may always 
be considered to be positive, and moreover g ~ f, implying the assumption that the anisotropy is small. 
The non-linearity of the medium is represented by the term with coefficient ×, which may be positive 
or negative, depending on the direction in which the stress-strain graph is convex. The sign of × is positive 
when the graph is convex upward and negative when it is convex downward. 

In this approximation the system of equations of the theory of elasticity has the form 
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ave, a(ao) ave, auc, 0w<, 
Oi =~xtO--~-a) ' ax = a t '  v~= at ' ot=l,2 (4.2) 

which has two pairs of characteristic velocities +ci and -+c2 corresponding to quasitransverse waves. 
We shall consider only waves propagating into the half-space x > 0 filled with the medium, taking 
cl(u.) c2(u.). 

The conservation laws at the discontinuity have the form 

[O~]=W2[u(z], a=1,2 (4.3) 

In the case of shock waves (SWs) they make it possible, by elimination of the jump velocity W, to obtain 
the shock adiabat for given u~ = Ua - a curve in the phase space (ul, u2) which intersects itself at the 
initial pointA(Ua). The same relations (4.3) wilt yield the jump velocity W along the shock adiabat and 
enable us to formulate the evolution conditions (1.3). 

(a) cT~<W~<c2, 0<W~<c~ ' - s lowSWs,  
(b) c ~ W  c~-~<W~c +-fas tSWs.  
These inequalities single out the evolutionary segments on the shock adiabat, as illustrated in the 

diagram of Fig. 4 by the parts of the curves in the hatched rectangles. The shape of the shock adiabat 
and the configuration of the evolutionary segments in both on the phase plane (u~, u2) and on the diagram 

• ") 2 • • • depend on the quonentsg/(×(U? + U2 )) and UJU2, which are given by the formulation of the problem. 
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We will first consider a medium for which × > 0. One possible position of the shock adiabat in the 
evolution diagram is shown in Fig 4(a). In the upper evolutionary rectangle, above the non-evolutionary 
segment FP of the shock adiabat (A), there are two segments, corresponding to two fast evolutionary 
SWs. In the neighbourhood of the arc FP in the (ul, u2) plane a solution of the self-similar problem 
may be constructed, using each of these fast SWs followed by a slow SW. Direct solution of the problem 
shows that one of the solutions (type I) consists of the fast SW emerging from the point A to state M1 
on the segment KE, and then a slow SW with shock adiabat (M1). This solution acts in the (ul, u2) plane 
in the region adjoining the arc FP from above (Fig. 5a). On the arc FP itself both SWs, fast and slow, 
have the same velocity and merge in the self-similar solution into a single non-evolutionary jump. On 
the other side of the arc FP in the (ul, u2) plane, there is another solution (type II), consisting of the 
sequence of a fast SWA ~ M2 (the point M2 lies on the evolutionary partAJ of the shock adiabat (.4)) 
and then a slow SW from state M2. On the arc FP itself, the velocities of the fast and slow SWs in this 
solution are identical. Thus, the regions in which I- and II-solutions exist adjoin the arc FP, so that there 
is a unique solution for a whole neighbourhood of the arc FP. 

Above the non-evolutionary segment PE in the upper hatched rectangle in Fig. 4(a) there is only 
one evolutionary segment QE of a shock adiabat (,4). The criterion proposed in this paper indicates 
that in this region the self-similar problem must have either more than one solution or none in the 
neighbourhood of the arc PE. Indeed, the explicit solution constructed in [4] indicates that, using the 
fast evolutionary SWA ~ M~, one can, as before, construct a I-solution in the region above the segment 
PE in the (Ul, u2) plane phase (Fig. 5a) up to the points of the arc PE itself. Below this arc the solution 
has another structure (a II-solution). It contains a fast Jouguet SW (according to the post-jump state, 
W = c~)A ~ J, after which there will be a fast Riemann wave, yet another fast Jouguet SW (according 
to the pre-jump state, W = c~), and then a slow SW. Because of the inclusion of a Riemann wave in 
the sequence, the initial state for the final slow SW will not belong to the shock adiabat (A), and therefore 
the final state will also be unrelated to the shock adiabat (A). This explains the fact that the II-solution 
continues over the arc PE into a region on its other side, where there is already a I-solution. 

The non-uniqueness region in the (ul, u2) plane is bounded by the segments PE of the shock adiabat 
(A) and QP of the shock adiabat (Q) (the state Q is defined by the condition WQ = W t) and then by 
integral curves of slow Riemann waves (shown hatched in Fig. 5a). 

As observed in Section 2, under these conditions part of the evolutionary segment of the shock adiabat 
QE adjoining the non-evolutionary segment at the Jouguet point E (WE = c~) entered the non- 
uniqueness region. It is obvious from the diagram of Fig. 4(a) that the non-uniqueness region exists 
only when the point E lies to the right of J. The Jouguet point may occupy such a position when 
g ~ [×](U~ + U~), that is when the anisotropy is small or the initial state has a large deformation. 
There is then a velocity range in which non-evolutionary { 1 } discontinuities and one fast evolutionary 
SW, propagating at the same velocity W, exist. 

The evolution diagram for media with × < 0 is shown in Fig. 4(b). Non-evolutionary { 1 } discontinuities 
are represented by the two segments FE and DD' of the shock adiabat (A). In the hatched evolutionary 
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rectangle above them there are segments KE and A,4' of the shock adiabat (A), corresponding to two 
types of fast evolutionary SWs with the same velocity W as the aforementioned non-evolutionary waves 
(corresponding to the points on a common vertical in Fig. 4). 

According to the criterion proposed here, the presence of a non-evolutionary segment FE should 
not lead to the appearance of non-uniqueness. The same may be said of the arc DP of the lower branch 
of the shock adiabat (A). But to the right of P, for the non-evolutionary segment PD' of the lower branch, 
the upper rectangle contains only one evolutionary fast SW with the same velocity W. Hence there must 
be a non-uniqueness region in the (u l, u2) plane in the neighbourhood of the arc PD'. 

Indeed, unlike the case × > 0, for media with × < 0, for a given value of W, there are two evolutionary 
slow SWs, thus producing two pairs of different solutions, acting in the (ul, u2) plane in 
neighbourhoods of the non-evolutionary segments FE and DD' of the shock adiabat (A), on different 
sides of each of these segments. When the velocities of the fast and slow SWs in each of the pairs 
are the same, this results in the appearance of two non-evolutionary jumps - one in state FE, the other 
in PD. 

When the velocity Wof the SW exceeds We, only one evolutionary fast SW remains. After this wave 
there may again be only one of the slow SWs. For that SW there are well-defined pre- and post-jump 
states. The pre-jump state is the state after the fast SW with the given velocity W, while the post-jump 
state is that after the non-evolutionary SW with the same velocity. Investigation shows that the slow 
SW corresponds in type to a point of the segment LD. Therefore, to the right of the vertical through 
the point E in Fig. 4(b), one can construct a I-solution as a sequence of two SWs only on one side of 
the non-evolutionary {1} segment of the shock adiabat (A) in the (ul, u2) plane. Direct solution of the 
self-similar problem shows that in the II-solution the fast SW A ---) M1 is followed by a slow Jouguet 
SW in state El - a Jouguet point (W = c~) of the shock adiabat (M 0, after that a slow Riemann wave, 
and then a slow Jouguet SW whose initial state does not belong to the shock adiabat (A), since these 
waves propagate at different velocities. The region of action of this solution is not bounded by the arc 
PD'. It has been shown [4} that in the (u~, u2) plane the II-solution acts on both sides of the arc PD', 
thereby producing a non-uniqueness region, in accordance with our criterion. This region is bounded 
on one side by the non-evolutionary branch PD" of the shock adiabat (A) and on the other by Jouguet 
points of slow SWs (W = c~) propagating through state EEl (the hatched zone in Fig. 5b). 

When the Jouguet point E, where W E = c~-, lies to the left of the vertical W = c~ in the diagram, the 
region of existence of the II-solution, as it is obvious by continuity, contains part of the evolutionary 
section of the shock adiabat (A), which is situated to the left of D. The evolution diagram for that situation 
is shown in Fig. 4(b) by the dashed curve. It has been shown [4] that the non-uniqueness region extends 
along the shock adiabat up to the point P', where W = W e. In that region both the I- and II-solutions 
in the (tt~, u2) plane consist of the same wave sequences, but in the first, instead of the SWA ~ M1, 
there is a fast Riemann wave to state M'l. The region of action of the II-solution is situated on both 
sides of the arc P'D, producing non-uniqueness. The non-uniqueness region in the (ul, u2) plane for 
this case is bounded by the segment DD' of the shock adiabat (A) and by curves consisting of Jouguet 
points for the pre-SW state for jumps from the initial statesAM'~ and EE'~. The conservation laws do 
not forbid disintegration of the evolutionary SW corresponding to the segment P'D into a system of 
II-solution waves. 
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For media with × < 0, the solution of the self-similar problem is always non-unique, but the position 
of the non-uniqueness region in the (ul, u2) plane approaches the origin when the anisotropy increases 
(or, equivalently, when the initial deformation Ut decreases). 

It is obvious that the qualitative picture of the position of shock adiabats in the evolution diagram, 
and with it our conclusions regarding non-unique solvability, may remain valid for finite-amplitude waves 
also; for such waves the behaviour of solutions in the phase ui-space has not been investigated, but the 
criterion presented in Section 2 is applicable. 

For effective application of the criterion to a continuous medium, the medium must allow at least 
two types of perturbation to propagate in one direction. The criterion is not applicable for media in 
which one family of characteristics propagate in each direction. An evolution diagram for such a case 
is shown in Fig. 6. The rectangles corresponding to evolutionary discontinuities are shown hatched. There 
is clearly no non-evolutionary {1} discontinuity corresponding to the rectangle W >I c-, c ÷ ~< W ~< 0, 
since only the first and third quadrants in the diagram are physically meaningful. Non-uniqueness 
conditions for problems of gas dynamics and for longitudinal waves of the non-linear theory of elasticity, 
when only one family of characteristics propagates in each direction, have been obtained previously 
[11]. 
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